1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
/*
* Copyright (C) 2015-2016 Département de l'Instruction Publique (DIP-SEM)
*
* Copyright (C) 2013 Open Education Foundation
*
* Copyright (C) 2010-2013 Groupement d'Intérêt Public pour
* l'Education Numérique en Afrique (GIP ENA)
*
* This file is part of OpenBoard.
*
* OpenBoard is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, version 3 of the License,
* with a specific linking exception for the OpenSSL project's
* "OpenSSL" library (or with modified versions of it that use the
* same license as the "OpenSSL" library).
*
* OpenBoard is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with OpenBoard. If not, see <http://www.gnu.org/licenses/>.
*/
#include "UBGeometryUtils.h"
#include "core/memcheck.h"
const double PI = 4.0 * atan(1.0);
const int UBGeometryUtils::centimeterGraduationHeight = 15;
const int UBGeometryUtils::halfCentimeterGraduationHeight = 10;
const int UBGeometryUtils::millimeterGraduationHeight = 5;
const int UBGeometryUtils::millimetersPerCentimeter = 10;
const int UBGeometryUtils::millimetersPerHalfCentimeter = 5;
const float UBGeometryUtils::inchSize = 25.4f;
UBGeometryUtils::UBGeometryUtils()
{
// NOOP
}
UBGeometryUtils::~UBGeometryUtils()
{
// NOOP
}
QPolygonF UBGeometryUtils::lineToPolygon(const QLineF& pLine, const qreal& pWidth)
{
qreal x1 = pLine.x1();
qreal y1 = pLine.y1();
qreal x2 = pLine.x2();
qreal y2 = pLine.y2();
qreal alpha = (90.0 - pLine.angle()) * PI / 180.0;
qreal hypothenuse = pWidth / 2;
// TODO UB 4.x PERF cache sin/cos table
qreal opposite = sin(alpha) * hypothenuse;
qreal adjacent = cos(alpha) * hypothenuse;
QPointF p1a(x1 - adjacent, y1 - opposite);
QPointF p1b(x1 + adjacent, y1 + opposite);
QPointF p2a(x2 - adjacent, y2 - opposite);
QPointF p2b(x2 + adjacent, y2 + opposite);
QPainterPath painterPath;
painterPath.moveTo(p1a);
painterPath.lineTo(p2a);
painterPath.arcTo(x2 - hypothenuse, y2 - hypothenuse, pWidth, pWidth, (90.0 + pLine.angle()), -180.0);
//painterPath.lineTo(p2b);
painterPath.lineTo(p1b);
painterPath.arcTo(x1 - hypothenuse, y1 - hypothenuse, pWidth, pWidth, -1 * (90.0 - pLine.angle()), -180.0);
painterPath.closeSubpath();
return painterPath.toFillPolygon();
}
QPolygonF UBGeometryUtils::lineToPolygon(const QLineF& pLine, const qreal& pStartWidth, const qreal& pEndWidth)
{
qreal x1 = pLine.x1();
qreal y1 = pLine.y1();
qreal x2 = pLine.x2();
qreal y2 = pLine.y2();
qreal alpha = (90.0 - pLine.angle()) * PI / 180.0;
qreal startHypothenuse = pStartWidth / 2;
qreal endHypothenuse = pEndWidth / 2;
// TODO UB 4.x PERF cache sin/cos table
qreal startOpposite = sin(alpha) * startHypothenuse;
qreal startAdjacent = cos(alpha) * startHypothenuse;
qreal endOpposite = sin(alpha) * endHypothenuse;
qreal endAdjacent = cos(alpha) * endHypothenuse;
QPointF p1a(x1 - startAdjacent, y1 - startOpposite);
QPointF p1b(x1 + startAdjacent, y1 + startOpposite);
QPointF p2a(x2 - endAdjacent, y2 - endOpposite);
QPointF p2b(x2 + endAdjacent, y2 + endOpposite);
QPainterPath painterPath;
painterPath.moveTo(p1a);
painterPath.lineTo(p2a);
painterPath.arcTo(x2 - endHypothenuse, y2 - endHypothenuse, pEndWidth, pEndWidth, (90.0 + pLine.angle()), -180.0);
//painterPath.lineTo(p2b);
painterPath.lineTo(p1b);
painterPath.arcTo(x1 - startHypothenuse, y1 - startHypothenuse, pStartWidth, pStartWidth, -1 * (90.0 - pLine.angle()), -180.0);
painterPath.closeSubpath();
return painterPath.toFillPolygon();
}
QPolygonF UBGeometryUtils::lineToPolygon(const QPointF& pStart, const QPointF& pEnd,
const qreal& pStartWidth, const qreal& pEndWidth)
{
qreal x1 = pStart.x();
qreal y1 = pStart.y();
qreal x2 = pEnd.x();
qreal y2 = pEnd.y();
QLineF line(pStart, pEnd);
qreal alpha = (90.0 - line.angle()) * PI / 180.0;
qreal hypothenuseStart = pStartWidth / 2;
qreal hypothenuseEnd = pEndWidth / 2;
qreal sinAlpha = sin(alpha);
qreal cosAlpha = cos(alpha);
// TODO UB 4.x PERF cache sin/cos table
qreal oppositeStart = sinAlpha * hypothenuseStart;
qreal adjacentStart = cosAlpha * hypothenuseStart;
QPointF p1a(x1 - adjacentStart, y1 - oppositeStart);
QPointF p1b(x1 + adjacentStart, y1 + oppositeStart);
qreal oppositeEnd = sinAlpha * hypothenuseEnd;
qreal adjacentEnd = cosAlpha * hypothenuseEnd;
QPointF p2a(x2 - adjacentEnd, y2 - oppositeEnd);
QPainterPath painterPath;
painterPath.moveTo(p1a);
painterPath.lineTo(p2a);
painterPath.arcTo(x2 - hypothenuseEnd, y2 - hypothenuseEnd, pEndWidth, pEndWidth, (90.0 + line.angle()), -180.0);
painterPath.lineTo(p1b);
painterPath.arcTo(x1 - hypothenuseStart, y1 - hypothenuseStart, pStartWidth, pStartWidth, -1 * (90.0 - line.angle()), -180.0);
painterPath.closeSubpath();
return painterPath.toFillPolygon();
}
QPolygonF UBGeometryUtils::arcToPolygon(const QLineF& startRadius, qreal spanAngleInDegrees, qreal width)
{
qreal startAngleInDegrees = - startRadius.angle();
if (startAngleInDegrees > 180)
startAngleInDegrees -= 360;
else if (startAngleInDegrees < -180)
startAngleInDegrees += 360;
qreal radiusLength = startRadius.length();
qreal angle = 2 * asin(width / (2 * radiusLength)) * 180 / PI;
bool overlap = qAbs(spanAngleInDegrees) > 360 - angle;
if (overlap)
spanAngleInDegrees = spanAngleInDegrees < 0 ? -360 : 360;
qreal endAngleInDegrees = startAngleInDegrees + spanAngleInDegrees;
qreal innerRadius = radiusLength - width / 2;
QRectF innerSquare(
startRadius.p1().x() - innerRadius,
startRadius.p1().y() - innerRadius,
2 * innerRadius,
2 * innerRadius);
qreal outerRadius = radiusLength + width / 2;
QRectF outerSquare(
startRadius.p1().x() - outerRadius,
startRadius.p1().y() - outerRadius,
2 * outerRadius,
2 * outerRadius);
QRectF startSquare(
startRadius.p2().x() - width / 2,
startRadius.p2().y() - width / 2,
width,
width);
QRectF endSquare(
startRadius.p1().x() + radiusLength * cos(endAngleInDegrees * PI / 180.0) - width / 2,
startRadius.p1().y() + radiusLength * sin(endAngleInDegrees * PI / 180.0) - width / 2,
width,
width);
QPainterPath painterPath(
QPointF(
startRadius.p1().x() + innerRadius * cos(startAngleInDegrees * PI / 180.0),
startRadius.p1().y() + innerRadius * sin(startAngleInDegrees * PI / 180.0)));
startAngleInDegrees = - startAngleInDegrees;
endAngleInDegrees = - endAngleInDegrees;
spanAngleInDegrees = - spanAngleInDegrees;
painterPath.setFillRule(Qt::WindingFill);
painterPath.arcTo(innerSquare, startAngleInDegrees, spanAngleInDegrees);
painterPath.arcTo(endSquare, 180.0 + endAngleInDegrees, spanAngleInDegrees > 0 ? -180.0 : 180.0);
painterPath.arcTo(outerSquare, endAngleInDegrees, - spanAngleInDegrees);
painterPath.arcTo(startSquare, startAngleInDegrees, spanAngleInDegrees > 0 ? -180.0 : 180.0);
painterPath.closeSubpath();
return painterPath.toFillPolygon();
}
/**
* @brief Build and return a polygon from a list of points (at least 2), and start and end widths.
*
* The resulting polygon will pass by all points in the curve; its thickness is calculated at each point
* of the curve (linearly interpolated between start and end widths) and the segments are joined by
* (approximately) curved joints.
*
* Like with lineToPolygon, the ends are semi-circular.
*/
QPolygonF UBGeometryUtils::curveToPolygon(const QList<QPointF>& points, qreal startWidth, qreal endWidth)
{
int n_points = points.size();
if (n_points < 2)
return QPolygonF();
if (n_points == 2)
return lineToPolygon(points[0], points[1], startWidth, endWidth);
QList<QPair<QPointF, qreal> > pointsAndWidths;
for (int i(0); i < n_points; ++i) {
qreal width = startWidth + (qreal(i)/qreal(n_points-1)) * (endWidth - startWidth);
pointsAndWidths << QPair<QPointF, qreal>(points[i], width);
}
return curveToPolygon(pointsAndWidths, true, true);
}
/**
* @brief Build and return a polygon from a list of points and thicknesses (at least 2)
*
* The resulting polygon will pass by all points in the curve; the segments are joined by
* (approximately) curved joints. The ends of the polygon can be terminated by arcs by passing
* `true` as the `roundStart` and/or `roundEnd` parameters.
*
*/
QPolygonF UBGeometryUtils::curveToPolygon(const QList<QPair<QPointF, qreal> >& points, bool roundStart, bool roundEnd)
{
int n_points = points.size();
if (n_points == 0)
return QPolygonF();
if (n_points == 1)
return lineToPolygon(points.first().first, points.first().first, points.first().second, points.first().second);
qreal startWidth = points.first().second;
qreal endWidth = points.last().second;
/* The vertices (x's) are calculated based on the stroke's width and angle, and the position of the
supplied points (o's):
x----------x--------x
o o o
x----------x -------x
The vertices above and below each 'o' point are temporarily stored together,
as a pair of points.
*/
typedef QPair<QPointF, QPointF> pointPair;
QList<pointPair> newPoints;
QLineF firstSegment = QLineF(points[0].first, points[1].first);
QLineF normal = firstSegment.normalVector();
normal.setLength(startWidth/2.0);
newPoints << pointPair(normal.p2(), points[0].first - QPointF(normal.dx(), normal.dy()));
/*
Calculating the vertices (d1 and d2, below) is a little less trivial for the
next points: their positions depend on the angle between one segment and the next.
d1
------------x
\
.a b . \
\
--------x \
d2 \ \
\ .c \
Here, points a, b and c are supplied in the `points` list.
N.B: The drawing isn't quite accurate; we don't do a miter joint but a kind
of rounded-off joint (the distance between b and d1 is half the width of the stroke)
*/
for (int i(1); i < n_points-1; ++i) {
//qreal width = startWidth + (qreal(i)/qreal(n_points-1)) * (endWidth - startWidth);
QLineF normal = (QLineF(points[i-1].first, points[i+1].first)).normalVector();
normal.setLength(points[i].second/2.0);
QPointF d1 = points[i].first + QPointF(normal.dx(), normal.dy());
QPointF d2 = points[i].first - QPointF(normal.dx(), normal.dy());
newPoints << pointPair(d1, d2);
}
// The last point is similar to the first
QLineF lastSegment = QLineF(points[n_points-2].first, points[n_points-1].first);
normal = lastSegment.normalVector();
normal.setLength(endWidth/2.0);
QPointF d1 = points.last().first + QPointF(normal.dx(), normal.dy());
QPointF d2 = points.last().first - QPointF(normal.dx(), normal.dy());
newPoints << pointPair(d1, d2);
QPainterPath path;
path.setFillRule(Qt::WindingFill);
path.moveTo(newPoints[0].first);
for (int i(1); i < n_points; ++i) {
path.lineTo(newPoints[i].first);
}
if (roundEnd)
path.arcTo(points.last().first.x() - endWidth/2.0, points.last().first.y() - endWidth/2.0, endWidth, endWidth, (90.0 + lastSegment.angle()), -180.0);
else
path.lineTo(newPoints.last().second);
for (int i(n_points-1); i >= 0; --i) {
path.lineTo(newPoints[i].second);
}
if (roundStart)
path.arcTo(points[0].first.x() - startWidth/2.0, points[0].first.y() - startWidth/2.0, startWidth, startWidth, (firstSegment.angle() - 90.0), -180.0);
else
path.lineTo(newPoints[0].first);
//path.closeSubpath();
return path.toFillPolygon();
}
QPointF UBGeometryUtils::pointConstrainedInRect(QPointF point, QRectF rect)
{
return QPointF(qMax(rect.x(), qMin(rect.x() + rect.width(), point.x())), qMax(rect.y(), qMin(rect.y() + rect.height(), point.y())));
}
QPoint UBGeometryUtils::pointConstrainedInRect(QPoint point, QRect rect)
{
return QPoint(qMax(rect.x(), qMin(rect.x() + rect.width(), point.x())), qMax(rect.y(), qMin(rect.y() + rect.height(), point.y())));
}
QRectF UBGeometryUtils::lineToInnerRect(const QLineF& pLine, const qreal& pWidth)
{
qreal centerX = (pLine.x1() + pLine.x2()) / 2;
qreal centerY = (pLine.y1() + pLine.y2()) / 2;
// Please put a fucking comment here
qreal side = sqrt((pWidth * pWidth) / 2);
qreal halfSide = side / 2;
return QRectF(centerX - halfSide, centerY - halfSide, side, side);
}
void UBGeometryUtils::crashPointList(QVector<QPointF> &points)
{
// QVector<QPointF> result(points);
int position = 1;
while(position < points.size())
{
if (points.at(position) == points.at(position - 1))
{
points.remove(position);
}
else
{
++position;
}
}
}
/**
* @brief Return the angle in degrees between three points
*/
qreal UBGeometryUtils::angle(const QPointF& p1, const QPointF& p2, const QPointF& p3)
{
// Angle between three points, using the law of cosines:
// The angle at B equals arccos((a^2-b^2+c^2)/(2*a*c)), where a, b and c are the sides of the triangle
// opposite A, B and C, respectively
qreal a, b, c, beta;
a = qSqrt(qPow(p2.x() - p3.x(), 2) + qPow(p2.y() - p3.y(), 2));
b = qSqrt(qPow(p1.x() - p3.x(), 2) + qPow(p1.y() - p3.y(), 2));
c = qSqrt(qPow(p1.x() - p2.x(), 2) + qPow(p1.y() - p2.y(), 2));
if (a == 0 || c == 0)
beta = 3.14159;
else
beta = qAcos(std::max(-1.0, std::min(1.0, (a*a - b*b + c*c)/(2*a*c))));
return 180.* beta/3.14159;
}
/**
* @brief Calculate a quadratic Bézier curve and return it in the form of a list of points
* @param p0 The start point of the curve
* @param p1 The control point of the curve
* @param p2 The end point of the curve
* @param nPoints The number of points by which to approximate the curve, i.e. the length of the returned list
* @return A list of points that can be used to draw the curve.
*/
QList<QPointF> UBGeometryUtils::quadraticBezier(const QPointF& p0, const QPointF& p1, const QPointF& p2, unsigned int nPoints)
{
QPainterPath path(p0);
path.quadTo(p1, p2);
QList<QPointF> points;
if (nPoints <= 1)
return points;
for (unsigned int i(0); i <= nPoints; ++i) {
qreal percent = qreal(i)/qreal(nPoints);
points << path.pointAtPercent(percent);
}
return points;
}