Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Q
qbe
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
lifo
A
Anaïs Halftermeyer
queryByExample
qbe
Commits
0025ce78
Commit
0025ce78
authored
Sep 26, 2025
by
Elias
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
evaluating similarty with metrics
parent
16400369
Changes
3
Hide whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
189 additions
and
0 deletions
+189
-0
NED.py
NED.py
+84
-0
README.md
README.md
+15
-0
confusion.py
confusion.py
+90
-0
No files found.
NED.py
0 → 100644
View file @
0025ce78
import
argparse
import
csv
from
pathlib
import
Path
import
pandas
as
pd
import
numpy
as
np
def
levenshtein
(
a
,
b
):
"""Calcul de la distance de Levenshtein entre deux séquences."""
n
,
m
=
len
(
a
),
len
(
b
)
if
n
==
0
:
return
m
if
m
==
0
:
return
n
dp
=
list
(
range
(
m
+
1
))
for
i
in
range
(
1
,
n
+
1
):
prev
=
dp
[
0
]
dp
[
0
]
=
i
ai
=
a
[
i
-
1
]
for
j
in
range
(
1
,
m
+
1
):
temp
=
dp
[
j
]
cost
=
0
if
ai
==
b
[
j
-
1
]
else
1
dp
[
j
]
=
min
(
dp
[
j
]
+
1
,
dp
[
j
-
1
]
+
1
,
prev
+
cost
)
prev
=
temp
return
dp
[
m
]
def
compute_ned_for_file
(
csv_file
):
ned_values
=
[]
with
open
(
csv_file
,
newline
=
""
,
encoding
=
"utf-8"
)
as
f
:
reader
=
list
(
csv
.
reader
(
f
))
reader
=
reader
[
1
:]
for
i
in
range
(
0
,
len
(
reader
),
2
):
if
i
+
1
>=
len
(
reader
):
break
_
,
query_phns
=
reader
[
i
]
_
,
matched_phns
=
reader
[
i
+
1
]
query_seq
=
[
p
for
p
in
query_phns
.
split
(
"-"
)
if
p
]
matched_seq
=
[
p
for
p
in
matched_phns
.
split
(
"-"
)
if
p
]
if
not
query_seq
or
not
matched_seq
:
continue
ed
=
levenshtein
(
query_seq
,
matched_seq
)
denom
=
max
(
len
(
query_seq
),
len
(
matched_seq
))
ned
=
ed
/
denom
if
denom
>
0
else
1.0
ned_values
.
append
(
ned
)
mean_ned
=
np
.
mean
(
ned_values
)
if
ned_values
else
1.0
return
mean_ned
,
len
(
ned_values
)
def
main
(
validation_dir
,
output_csv
):
validation_dir
=
Path
(
validation_dir
)
csv_files
=
list
(
validation_dir
.
glob
(
"*.csv"
))
if
not
csv_files
:
print
(
"Aucun CSV trouvé dans le dossier fourni."
)
return
results
=
[]
for
csv_file
in
csv_files
:
word
=
csv_file
.
stem
.
split
(
"_"
)[
0
]
mean_ned
,
n_pairs
=
compute_ned_for_file
(
csv_file
)
results
.
append
({
"word"
:
word
,
"File"
:
csv_file
.
name
,
"Mean_NED"
:
mean_ned
,
"Num_pairs"
:
n_pairs
})
df
=
pd
.
DataFrame
(
results
)
df
.
to_csv
(
output_csv
,
index
=
False
)
print
(
f
"NED par fichier sauvegardé dans {output_csv}"
)
print
(
df
)
if
__name__
==
"__main__"
:
parser
=
argparse
.
ArgumentParser
(
description
=
"Calcul du NED pour chaque CSV de matches."
)
parser
.
add_argument
(
"validation_dir"
,
type
=
Path
,
help
=
"Dossier contenant les CSV des mots"
)
parser
.
add_argument
(
"output_csv"
,
type
=
Path
,
help
=
"Fichier CSV pour sauvegarder le NED"
)
args
=
parser
.
parse_args
()
main
(
args
.
validation_dir
,
args
.
output_csv
)
README.md
View file @
0025ce78
...
...
@@ -129,6 +129,21 @@ python3 matchQueryHS.py /path/to/your/turn/of/speech/npz /path/to/your/queries/n
python3 transcriptionAfterMatching1_fichiers.py /path/to/your/matched/pairs /output/dir textGrid/
```
### • This script evaluate the similarity with NED metric
**NED.py :**
```
bash
python3 NED.py /path/to/PhonemesMatching /path/to/output/NED.csv
```
### • This script evaluate the similarity with Precision and Recall metrics
**confusion.py :**
```
bash
python3 confusion.py /path/to/PhonemesMatching /path/to/groundTruth.csv
--out
/path/to/output/precision_recall_TP-FP-FN_F1.csv
```
# Tools
### • Counting the number of segments
...
...
confusion.py
0 → 100644
View file @
0025ce78
import
csv
from
pathlib
import
Path
from
collections
import
defaultdict
def
analyze_matches
(
match_dir
:
Path
,
gt_csv
:
Path
):
"""
Analyse les fichiers CSV de matches pour calculer TP, FP, FN, Precision, Recall et F1.
match_dir : dossier contenant les CSV de matches.
gt_csv : CSV de référence avec colonnes 'word','nb_occ_dans_chaque_Query'.
"""
# Charger le nombre réel d'occurrences (ground truth)
real_counts
=
{}
with
open
(
gt_csv
,
newline
=
''
,
encoding
=
'utf-8'
)
as
f
:
reader
=
csv
.
DictReader
(
f
)
for
row
in
reader
:
real_counts
[
row
[
'word'
]]
=
int
(
row
[
'nb_occ_dans_chaque_Query'
])
results
=
defaultdict
(
lambda
:
{
'TP'
:
0
,
'FP'
:
0
,
'FN'
:
0
})
for
csv_file
in
match_dir
.
glob
(
"*.csv"
):
word
=
csv_file
.
stem
.
split
(
"_"
)[
0
]
with
open
(
csv_file
,
newline
=
''
,
encoding
=
'utf-8'
)
as
f
:
reader
=
list
(
csv
.
reader
(
f
))
reader
=
reader
[
1
:]
for
i
in
range
(
0
,
len
(
reader
),
2
):
if
i
+
1
>=
len
(
reader
):
break
query_line
=
reader
[
i
]
matched_line
=
reader
[
i
+
1
]
_
,
query_phns
=
query_line
_
,
matched_phns
=
matched_line
if
query_phns
==
matched_phns
:
results
[
word
][
'TP'
]
+=
1
else
:
results
[
word
][
'FP'
]
+=
1
# Calculer FN en utilisant le ground truth
if
word
in
real_counts
:
total_real
=
real_counts
[
word
]
found
=
results
[
word
][
'TP'
]
results
[
word
][
'FN'
]
=
max
(
0
,
total_real
-
found
)
# Calculer Precision, Recall, F1
output_rows
=
[]
for
word
,
counts
in
results
.
items
():
TP
=
counts
[
'TP'
]
FP
=
counts
[
'FP'
]
FN
=
counts
[
'FN'
]
precision
=
TP
/
(
TP
+
FP
)
if
(
TP
+
FP
)
>
0
else
0.0
recall
=
TP
/
(
TP
+
FN
)
if
(
TP
+
FN
)
>
0
else
0.0
f1
=
2
*
precision
*
recall
/
(
precision
+
recall
)
if
(
precision
+
recall
)
>
0
else
0.0
output_rows
.
append
({
'word'
:
word
,
'TP'
:
TP
,
'FP'
:
FP
,
'FN'
:
FN
,
'Precision'
:
round
(
precision
,
3
),
'Recall'
:
round
(
recall
,
3
),
'F1'
:
round
(
f1
,
3
)
})
return
output_rows
def
save_results
(
output_rows
,
out_csv
):
with
open
(
out_csv
,
'w'
,
newline
=
''
,
encoding
=
'utf-8'
)
as
f
:
fieldnames
=
[
'word'
,
'TP'
,
'FP'
,
'FN'
,
'Precision'
,
'Recall'
,
'F1'
]
writer
=
csv
.
DictWriter
(
f
,
fieldnames
=
fieldnames
)
writer
.
writeheader
()
for
row
in
output_rows
:
writer
.
writerow
(
row
)
if
__name__
==
"__main__"
:
import
argparse
parser
=
argparse
.
ArgumentParser
(
description
=
"Calcul TP/FP/FN à partir des matches et ground truth."
)
parser
.
add_argument
(
"match_dir"
,
type
=
Path
,
help
=
"Dossier contenant les CSV de matches"
)
parser
.
add_argument
(
"gt_csv"
,
type
=
Path
,
help
=
"CSV ground truth avec 'word' et 'nb_occ_dans_chaque_Query'"
)
parser
.
add_argument
(
"--out"
,
type
=
Path
,
default
=
"TP_FP_FN_results.csv"
,
help
=
"CSV de sortie"
)
args
=
parser
.
parse_args
()
output_rows
=
analyze_matches
(
args
.
match_dir
,
args
.
gt_csv
)
save_results
(
output_rows
,
args
.
out
)
print
(
f
"Résultats sauvegardés dans {args.out}"
)
for
r
in
output_rows
:
print
(
r
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment